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The recently proposed population analysis of pair densities is applied to the investigation of molecu-
lar structure of several simple molecules. The values of pairon populations straightforwardly repro-
duce the classical structural formula including the multiplicity of the bonds and provide thus the so
far missing link between quantum chemical and Lewis’s classical picture of bonding. As demon-
strated, the formalism of the proposed approach provides strong theoretical evidence for the frequently
expected but so far elusive role of electron pairing in chemical bonding.

One of the most fruitful concepts of modern chemistry is the concept of chemical
bond1. Because of its immense impact for chemistry, this concept has become the sub-
ject of numerous investigations aiming at disclosure of its exact meaning. The first
successfull attempt in this respect is due to Lewis2, whose idea of chemical bond as a
shared electron pair allowed a clear physical interpretation of classical structural for-
mulae. This, in principle localized picture of bonding was supported by the approxi-
mate validity of empirical additivity rules for various molecular properties.

The really quantitative theory of chemical bonding was, however, created only after
the formulation of quantum mechanics. This quantum chemical description leads,
however, to an entirely different picture of bonding. Instead of the concept of more or
less independent chemical bonds localized in different regions of space, quantum
mechanics operates with the wave function which is usually spread over the whole
molecule. This considerable conceptual difference as well as the immense debt which
chemistry owes to classical Lewis’s electron pair theory has stimulated from early days
of quantum theory the attempts at the reconciliation of these two alternative pictures of
bonding3 – 26.

If we disregard the concept of the so-called localized orbitals3 – 11 which, because of
their one-electron nature are inherently unable to describe the two-electron phenomena,
the first serious attempt to evaluate the role of electron pairing in bonding explicitly is
represented by the so-called loge theory18 – 22. According to this theory the molecular
volume is to be dissected into several nonoverlapping regions in a way to minimize the
so-called missing information function I(Pn, Ω), where Pn(Ω) is the probability that n
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electrons occupy the region (loge) Ω when the remaining (N − n) electrons are confined
in the remainder of the system

 I(Pn,Ω)   =   − ∑ 
n

Pn(Ω)  ln Pn(Ω) .

Using this definition it was indeed possible to obtain the best loges for a number of
simple molecules and the most probable partitioning did indeed localize two electrons
in regions which are usually associated with core, bonded and nonbonded electron
pairs. In spite of this success, the parallel between the loge and chemical bond is not,
however, entirely complete since quite simple molecules were also found, for which the
partitioning into loges is impossible.

Another approach closely related to the loge theory is due to Bader23,24, Levy25 and
Julg26, who proposed to determine the boundaries of individual regions from the condi-
tion of minimization of fluctuation of electron pair in these regions. Nevertheless, the
parallel between the bond and the localized electron pair was not completely convinc-
ing in this approach either since there are molecules for which the possibility of pair
localization is unacceptably small. In view if this result Bader27 has even proposed not
to consider as fundamental building blocks of the molecules the individual chemical
bonds but, instead, he rather prefers the dissection of molecule into what he calls atoms
in molecule.

In spite of this, the intuitive faith in the role of electron pair in bonding is still strong
enough and the attempts to disclose such a role still continue28 – 30. Into the framework
of this effort can be included also our recent study31 in which a new formalism, the
so-called population analysis of pair density was proposed. Using this approach we
have been able to demonstrate that properly defined pair quantities do indeed support
the electron pair nature of chemical bond.

Our aim in this study is to pursue the general methodology of the pair population
analysis and to demonstrate that its formalism leads to the picture of chemical bond that
is remarkably close to classical Lewis idea of shared electron pair.

THEORETICAL

Since the mathematical formalism of the proposed population analysis is sufficiently
described in our previous study31 we will not go into details here and, instead, only a
brief review of the basic ideas and formulas to the extent necessary for the purpose of
this study will be given. The philosophy of the proposed population analysis arises
from simple idea that in order to assess the role of electron pair in bonding it is necess-
ary to work with quantities which are able to describe the desired pair behavior13. The
simplest of such quantities is the second order density matrix or, more precisely, only
the diagonal element of this matrix, the so-called pair density
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γ(1,2)   =   
N(N − 1)

2
  ∫ Φ2(1, 2, . . . . . N)dσ1dσ2dx3dx4 . . . . dxN . (1)

Within the framework of SCF approximation, which is of our concern here, the pair
density is given by the well known formula (2),

γ(1,2)   =   ∑ 
α,β

 ∑ 
γ,δ

Ωαβγδ χα(1) χβ(1) χγ(2) χδ(2) , (2)

where the expansion coefficients Ωαβγδ are given by Eq. (3).

Ωαβγδ   =   
1
2

 



 pαβ pγδ−  

1
2

 pαγ pβδ




(3)

As shown, however, in previous study, such a straightforward expansion in the basis of
atomic orbitals is not very convenient since the four index form of the expansion coef-
ficient matrix Ω is for the work with pair density unnecessarily complicated. In order to
overcome this complication we proposed to expand the pair density in the basis of true
two-electron functions – the so-called geminals (spingeminals) λ. Using this approach
the original expansion formula simplifies to the form Eq. (4) from which it is evident
that in geminal basis the pair density has the form of usual two-index matrix γ

γ(1,2)   =   ∑ 
αβ

γαβ λα(1) λβ(1,2) . (4)

We can thus see that in the geminal basis the pair density has the same simple form as
normal first order density matrix in the basis of orbitals. This allows us to use the idea
of Mulliken population analysis32 and to introduce pairon population analysis in which,
owing to orthogonality of geminal basis, only the diagonal elements of the pair density
can be taken into account. Since these elements unambigously correspond to individual
geminals which, in turn, can be directly associated with electron pair either localized on
atoms or shared between atoms, it is possible to introduce the atomic and biatomic
pairon populations analogous to “net” quantities of Mulliken analysis. This is an im-
portant simplification since in alternative pairon population analysis33 the three- and
four-atomic contributions appeared. In spite of straightforward parallel with Mulliken
analysis, the situation with pairon populations is nevertheless slightly more compli-
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cated. This is due to the fact that the matrices γ representing geminal and/or spingemi-
nal expansion of pair densities have a special block diagonal form with individual
blocks corresponding to singlet and triplet states of electron pair. This suggests that in
our approach it is possible to distinguish between the singlet and triplet pairon popula-
tions. The resulting expressions are given by the following equations (5)

ΠAA
s    =   

1
4

 ∑ 
µ

A

 pµµ
2 +  

1
4

  ∑ 
µ < ν

A

(pµµ pνν+ pµν
2 ) (5a)

ΠAA
t    =   

3
4

  ∑ 
µ < ν

A

(pµµ pνν− pµν
2 ) (5b)

ΠAB
s    =   

1
4

 ∑ 
µ

A

∑ 
ν

B

(pµµ pνν+ pµν
2 ) (5c)

ΠAB
t    =   

3
4

 ∑ 
µ

A

∑ 
ν

B

(pµµ pνν− pµν
2 ) , (5d)

where pµµ and pµν are the elements of ordinary charge density bond order matrix
defined by Eq. (6)

pµν   =   2 ∑ 
i

occ

cµi cνi . (6)

The individual populations fulfill the natural normalization conditions (7), where the
quantities N(1) and N(3) give the total number of singlet and the triplet pairs in the
system with N electrons.

∑ 
A

ΠAA
s   +  ∑ 

A < B

ΠAB
s    =   N(1)   =   

N(N + 2)
8

∑ 
A

ΠAA
t   +  ∑ 

A < B

ΠAB
t    =   N(3)   =   

3N(N − 2)
8

(7)

The total number of pairs which is equal to N(N − 1)/2 is given by the sum of N(1)and
N(3). As demonstrated in previous study31, the above introduced pairon populations
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have a number of interesting applications. Among them the most important is the possi-
bility to reproduce the classical structural formulae including the multiplicity of the
bonds. The quantity on the basis of which such a reproduction is possible is the effec-
tive population ΠAB

eff  defined by the relation (8).

ΠAB
eff    =   ΠAB

s  −  
1
3

 ΠAB
t (8)

Using these quantities we have been able to show that these populations attain nonne-
gligible values only between the atoms joined by a classical bond while for noncon-
nected atoms the populations are close to zero. Moreover, where the populations
indicate the presence of the bonds, the values are little sensitive to the nature of bond,
and rather than on the type of bonded atoms depend on the multiplicity of the bond.
Thus, for example, the values for all single bonds are close to 0.5, whereas for double
and triple bonds the populations are close to 1 and 1.5, respectively.

While in previous study31 the effective bond populations were introduced rather in-
tuitively, our aim in this report is to attempt at more sound theoretical justification of
these quantities and to demonstrate the important role they play in the qualitative un-
derstanding of the nature of chemical bond.

RESULTS AND DISCUSSION

In order to analyze the role of electron pairing in bonding it is first convenient to
discuss the applicability of pairon populations by several practical examples. For this
purpose we present in Tables I and II the calculated values of singlet, triplet and effec-
tive populations for a series of simple molecules. The calculations were performed by
standard MNDO method33. The molecules were considered in their respective op-
timized geometries.

Let us attempt now to discuss the conclusions suggested by the presented values.
First what can be seen are again the already reported trends in the values of effective
populations31, whose values display much higher regularity than the values of individ-
ual singlet and triplet populations themselves. The most important in this respect is the
remarkable independence of the effective populations on the type of bonded atoms and,
on the other hand, their proportionality to the multiplicity of the bond. This opens the
possibility to reproduce the classical structural formula just from the quantities directly
derivable from the wave functions. In this connection it is perhaps fair to say that a
certain visualization of the structural formula is available, even in graphical form, using
various localization procedures incorporated into modern quantum chemical programs
but as already stressed above this, in principle one-electron approach, is inherently
unable to say anything about the presumed role of electron pair in bonding. In this
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respect thus our approach does not provide only a simple duplication of what was al-
ready known but, and this is new, also brings a clear theoretical evidence in favor of
Lewis’s electron pair model of chemical bond.

Since the role of the effective bonding populations in reproducing the structural for-
mula was sufficiently demonstrated in previous study31, we concentrate ourselves here
to another interesting feature which is the exploitation of monoatomic populations
ΠAA

eff  defined by Eq. (9).

ΠAA
eff    =   ΠAA

s  −  
1
3

 ΠAA
t (9)

As we shall see these values allow one to enrich the primary structural information by
the detection of eventual presence of free electron pairs and, also, by a rough estimate
of the asymmetry in shared electron pair resulting from the differences in electronega-

TABLE I
Calculated values of singlet, triplet and effective pairon populations for a series of simple molecules

Molecule
One-center terms Two-center terms

type ΠAA
s ΠAA

t ΠAA
eff type ΠAB

s ΠAB
t ΠAB

eff

  H2 H 0.250 0.000 0.250 HH 0.500 0.000 0.500

  HF H 0.127 0.000 0.127 HF 1.528 3.208 0.459

F 8.345 14.792 3.414

  H2O H 0.175 0.000 0.175 OH 1.566 3.244 0.485

O 6.341 10.988 2.678 H...H 0.176 0.523 0.002

  NH3 H 0.213 0.000 0.213 NH 1.455 2.882 0.494

N 4.353 7.441 1.873 H...H 0.214 0.638 0.001

  CH4 H 0.259 0.000 0.259 CH 1.245 2.264 0.490

C 2.422 4.314 0.984 H...H 0.260 0.772 0.002

  HCl H 0.167 0.000 0.167 HCl 1.708 3.674 0.483

 Cl 8.126 14.326 3.351

  H2S H 0.229 0.000 0.229 SH 1.705 3.618 0.499

S 5.904 10.078 2.545 H...H 0.229 0.686 0.000

  PH3 H 0.297 0.000 0.297 PH 1.537 3.122 0.496

P 3.610 5.963 1.622 H...H 0.297 0.890 0.000

  SiH4 H 0.331 0.000 0.331 SiH 1.203 2.255 0.451

 Si 1.840 3.134 0.795 H...H 0.337 0.974 0.012
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tivity of bonded atoms. In order to demonstrate this particular feature it is convenient
to analyse first the simplest case of homonuclear biatomic molecule like H2. In this
case the situation is especially simple since the MO wave function leads to the well-
known result according to which half of the pair resides in biatomic (covalent) popula-
tions while remaining half is uniformly distributed between two atomic (ionic)
populations.

| ϕϕ
__

 |   =   
1
4

 | χa χa 

___
|  +  

1
4

 | χb χb 

___
|  +  

1
2

 1Ψ

1Ψ   =   
1
√2  {| χa χb 

___
|  +  | χb χa 

___
| } (10)

Prior to discussing the implications arising from the ionic populations let us focus our
attention just on another feature of pairon population analysis which is the advantage of
introducing effective instead of direct use of primary singlet and triplet populations*.
At the first sight such an introduction could seem rather artificial since according to
naive expectations the pure singlet pairs should better correspond to bonding. Such is
not, however, the case. The first indication of the inconvenience of pure singlet (or
triplet) populations arises from the fact that the number of bonds plus core and free
electron pairs which a given molecule can form is usually much lower than the number
of (singlet or triplet) pairs. It would be therefore quite difficult to have any direct rela-
tion between the number of singlet (or triplet) pairs and the number of bonds. For that
reason it is also quite difficult to say whether some clearcut physical interpretation can
be attributed to individual singlet and triplet populations. The situation is, however,
entirely different with the effective populations whose straightforward relation to
chemical bonds clearly follows from the Eq. (11). As can be seen, the sum of effective
populations represented by the difference between the number of singlet and one third
of triplet pairs is equal to N/2 which is just the number of bonds plus free electron pairs
for a molecule with N valence electrons.

∑ 
A

ΠAA
eff   +  ∑ 

A < B

ΠAB
eff    =   N(1) −  

1
3

N(3)   =   
N
2

(11)

In our case of hydrogen molecule we thus have just one bond and no free pair.
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After this discussion of the specific role of effective pairon populations let us return
back to the problem of monoatomic populations. Their equality (ΠAA

eff  = ΠBB
eff  = 0.25) in-

dicates that in this ideally symmetric case the electron pair is shared uniformly between
the atoms. As a next example let us consider the case of biatomic heteropolar molecule
like H−F. As can be seen from the Table I, the effective populations are the following

ΠHH
eff    =   0.127  

ΠFF
eff   =   3.414  

ΠHF
eff    =   0.459 . (12)

What can be deduced from these values? First of all it is possible to see that the bond
population ΠHF

eff  is again close to ideal value of 0.5, indicating thus the bond as single.
Much more interesting are, however, the values of atomic effective populations since
their values, as already stressed above, give an information about the asymmetry of the
charge distribution and, also, about the presence of free electron pairs. Let us consider,
just from this point of view, the atomic populations in H−F molecule. If the electron
distribution of the H−F bond were ideally nonpolar, it would be possible to expect a
value of 0.25 for atomic populations on hygrogen and, if we take into account 3 free

TABLE II
Calculated values of singlet, triplet and effective pairon populations for a series of molecules with
multiple bonds

Molecule   
One-center terms Two-center terms

type ΠAA
s ΠAA

t ΠAA
eff type  ΠAB

s ΠAB
t ΠAB

eff

CH2=CH2 H 0.230 0.000 0.230  CH 1.220 2.214 0.482

C 2.609 4.657 1.056  CC 4.658 10.994 0.993

 H...H 0.232 0.684 0.004

CH2O H 0.251 0.000 0.251  CH 1.153 2.110 0.450
C 2.170 3.799 0.903  CO 6.330 15.984 0.970

O 6.254 10.909 2.618  H...H 0.262 0.717 0.023

 O...H 1.588 4.683 0.027

CH≡CH H 0.179 0.000 0.179  CH 1.115 1.925 0.473

C 2.705 4.528 1.196  CC 5.054 10.727 1.478
 H...H 0.181 0.531 0.004
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electron pairs on fluorine, a population 3.25 on this atom*. Although as can be seen
from the actual values the atomic populations are quite close to these limits, some
deviations do exist as well and just these deviations inform us about the asymmetry of
the charge distribution. Thus e.g., the fact that the fluorine population is higher than
expected while the hydrogen population is less is just an indication of the greater elec-
tronegativity of fluorine. The analogous situation holds then also for other molecules.
Thus, e.g., for H2O and H2S molecules, the ideally nonpolar distribution should require
the population of 0.25 on each hydrogen and 2.5 (2 + 2 × 0.25) on oxygen (sulfur)
whereas for NH3 (PH3) molecule the ideal population should be 0.25 on each hydrogen
and 1.75 (1 + 3 × 0.25) on nitrogen (phosporus). As can be seen from actual values, the
individual populations are rather close to these ideal limits and the existing deviations
again correctly reflect the differences in electronegativity. In this connection it is per-
haps interesting to remark that the parallel between the atomic populations and elec-
tronegativity is even of quantitative nature. As can be seen from Fig. 1 corresponding
to a series of simple hydrides of the type HnX (X = F, O, N, C, Cl, S, P, Si) there is a
nearly perfect linear correlation between the hydrogen atomic population ΠHH

eff  and the
valence state electronegativity34 of central atom X in the same series. We can thus see
that the introduction of the effective pairon populations is not apparently an artificial
construction but that these values do indeed reflect real facets of electron structure.
Another interesting feature supporting the introduction of effective pairon populations
is that their values are closely related to another key chemical concept which is the
concept of valence35 – 37. Classically the valence is understood as a number of electron
pairs which a given atom is able to share with its neighbours. On the other hand another
quantum chemical definition was proposed by Jug and while the calculated values of
valencies are close to classical expectations, the relation of both definitions is not im-
mediately apparent. As we shall see, the effective pairon populations can just provide a
missing link between both definitions. As can be seen, namely, from the definitions (5),
the sum of effective populations is just equal to Wiberg indices38 WAB, in terms of
which the valencies were defined by Jug. It holds:

2 ∑ 
B ≠ A

ΠAB
eff    =   ∑ 

B ≠ A

 ∑ 
µ

A

 ∑ 
ν

B

 pµν
2    =   ∑ 

B ≠ A

WAB   =   VA . (13)
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In connection with the problem of quantum chemical definition of valency it is also
interesting to remark that the ideas requiring the introduction of characteristics analo-
gous to our effective populations were formulated already in the early days of quantum
mechanics. To illustrate this point we quote from the commemorative paper by Hund39:
“The valence of an atom is the number of electrons which can enter bonding minus the
number of electrons which have to enter bond weakening states”. Taking into account
that the electron pair in singlet geminal corresponds to attraction between nuclei while
the pair in triplet geminal is repulsive (see e.g. the differences in the behavior of singlet
and triplet states of hydrogen molecule), the parallel with our effective quantities is
striking.

Summarizing the above results we would like to express our belief that the proposed
pairon population analysis represents a new, perhaps interesting attempt to explain the
role of electron pairing in chemical bonding and to contribute thus to the solution of the
old but still living problem of the nature chemical bond and of its relation to classical
Lewis ideas. In this respect the main conclusion of this study is that if some quantity
could be straightforwardly related to chemical bond then it should be some “effective”
quantity corresponding, like our effective populations, to the difference between attrac-
tive singlet and repulsive triplet contributions. From this point of view it is also perhaps
possible to understand the failures of previous attempts to prove the pair nature of
chemical bond since the characteristics these studies dealt with were based on manipu-
lations with quantities corresponding to either α,α or α,β electron pairs, but these quan-
tities, not being derived from spin pure states of electron pair are for the correct
treatment of pair properties apparently inconvenient.

FIG. 1
Dependence of effective atomic populations
ΠHH

eff  in a series of simple hydrides HnX on
the values of valence state electronegativity
of the hydrogen in the same series. The
electronegativities were determined accord-
ing to procedure reported in the study34
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In connection with the above proved role of electron pair in bonding it is, however,
necessary to bear in mind, that the straightforward parallel with classical Lewis’s ideas
supported by our model can be expected to hold only for “normal” closed shell mole-
cules which are correctly described by simple SCF one-determinantal wave function. If
such is not the case as, e.g. for excited states, open shell structures or molecules whose
description requires the inclusion of electron correlation (1,3 dipoles for instance), the
above simple analysis is not convenient in its present form and in order to make it
applicable here, the appropriate generalizations will be certainly required. These gener-
alizations are currently being investigated in our laboratory and their results will be
described elsewhere.
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